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MAARTEN A.S. BOKSEM and ALE SMIDTS*

Although much progress has been made in relating brain activations to
choice behavior, evidence that neural measures could actually be useful
for predicting the success of marketing actions remains limited. To be of
added value, neural measures should significantly increase predictive
power, beyond conventional measures. In the present study, the authors
obtain both stated preference measures and neural measures
(electroencephalography; EEG) in response to advertisements for
commercially released movies (i.e., movie trailers) to probe their
potential to provide insight into participants’ individual preferences as
well as movie sales in the general population. The results show that EEG
measures (beta and gamma oscillations), beyond stated preference
measures, provide unique information regarding individual and
population-wide preference and can thus, in principle, be used as a
neural marker for commercial success. As such, these results provide
the first evidence that EEG measures are related to real-world outcomes
and that these neural measures can significantly add to models
predicting choice behavior relative to models that include only stated
preference measures.

Keywords: neuromarketing, consumer neuroscience, electroencephalo-
graphy, beta, gamma

Brain Responses to Movie Trailers Predict
Individual Preferences for Movies and
Their Population-Wide Commercial
Success

Consumer neuroscience, that is, applying neuroscience
methods to marketing, has gained considerable popularity in
recent years among scholars and practitioners alike (Smidts
et al. 2014; Yoon et al. 2012). As Ariely and Berns (2010)
note, there seem to be good reasons for this enthusiasm.
First, because brain data are considered less noisy than data
obtained through conventional marketing methods, data
from smaller samples are believed to generate more accu-

rate predictions, making neuroscience methods cheaper and
faster than traditional methods. Second, it is believed that
neuroimaging methods could provide marketers with infor-
mation that is not obtainable through conventional market-
ing methods. This idea is based on the assumption that peo-
ple cannot fully articulate their preferences when asked to
express them explicitly and that consumers’ brains contain
hidden information about their true preferences.

Indeed, several decades of research have shown that
many important mental processes occur below the surface
of consciousness (Dijksterhuis 2004; Zajonc 1980), leaving
people very limited in their ability to predict their own
future behavior and to accurately identify their internal
mental states through verbal or written self-reports (Nisbett
and Wilson 1977). Complicating matters further, explicitly
asking participants to reflect on such internal mental states
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and the process leading to choice has been shown to actu-
ally alter the outcome and quality of their judgments (Mor-
witz and Fitzsimons 2004; Wilson and Schooler 1991).
Thus, suffering from such biases, traditional approaches to
marketing may indeed provide data that are not very accu-
rate (Griffin and Hauser 1993). Yet can neuroscientific
measurements provide less biased data?

Evidence from neuroscience suggests that, in particular,
the ventromedial aspect of the prefrontal cortex (vmPFC) is
implicated in implicit valuation and processing preferences
and goals, independent of conscious awareness (Damasio
1996; D’Argembeau et al. 2010; Hare, Malmaud, and
Rangel 2011; Levy et al. 2011; McClure et al. 2004). Impor-
tantly, these neural indicators of implicit preference have
been shown to be predictive of the actual choices people
make (Falk et al. 2011; Knutson et al. 2007; Tusche, Bode,
and Haynes 2010; for a recent meta-analysis, see also Bar-
tra, McGuire, and Kable 2013). In addition, research has
shown activity in the vmPFC in response to products or
advertisements in a small sample of participants (a “neural
focus group”) to be predictive of population-wide commer-
cial success (Berns and Moore 2012; Falk, Berkman, and
Lieberman 2012). Thus, evidence exists that (1) neuroimag-
ing methods can provide marketers with information that is
not obtainable through conventional marketing methods, (2)
such neural markers can be reliably obtained from a rela-
tively small sample of participants, and (3) these neural
markers are actually predictive of commercial success.

There are, however, also reasons to be somewhat less
optimistic about the usefulness of neural data in marketing
practice. First, although consumers are often not very good
at stating their own preferences and predicting their own
future behavior, it is not the case that stated preferences are
completely unrelated to actual choice. There is a wealth of
data showing that measures such as willingness to pay
(WTP) perform quite well in predicting observed choice.
Second, evidence on the predictive value of neural measures
stems mainly from functional magnetic resonance imaging
(fMRI). The MRI machine is not the most natural environ-
ment; it is uncomfortable (participants lie in a narrow tube)
and very noisy (noise levels typically exceed 90 dB). Evi-
dence exists that such adverse environmental characteristics
may have a substantial (negative) impact on cognition and
choice (Arnsten and Goldman-Rakic 1998; Szalma and
Hancock 2011), thus potentially distorting any relationship
between brain and (population) behavior.

To resolve these issues, we primarily need to show not
only that our neural measures predict consumer choices but
also that these measures actually provide unique added
value in terms of predictive power beyond traditional mea-
sures. That is, because we acknowledge that traditional self-
report measures often perform quite well in predicting pref-
erences and choice, we therefore need to demonstrate that
neural data can actually capture unique information about
marketing stimuli that can be of additive value in combina-
tion with traditional measures. Moreover, we need to mea-
sure brain activity in relatively natural settings to achieve
maximal generalizability to real-world situations. This is
what we set out to achieve in the present study.

We obtained both stated preference measures and neural
measures in response to advertisements for commercially

released movies (i.e., movie trailers). With a global box
office return of approximately $35 billion (Motion Picture
Association of America [MPAA] 2012), the movie industry
is a market with tremendous prospects for profit, but it is
also a risky market: 75% of movies earn a net loss during
their run in theaters (De Vany and Walls 1999). With such
high variance in profit, the stakes for attracting audiences to
the theater are high indeed. Promotion expenditures for a
major movie release average more than $40 million (MPAA
2012). Comparing this number with the $70 million average
budget to produce a movie makes it clear that advertising is
extremely important for the motion picture industry. Movies
are advertised through many channels but most prominently
through theatrical trailers, which reach their audience
through cinemas, rented media, and the Internet. These
movie trailers are the preferred source of information for
consumers to determine which movie they will actually go to
see (Gazley, Clark, and Sinha 2011). Therefore, increasing
the probability of success by pretesting and optimizing movie
trailers by means of neuroimaging methods could be of great
benefit to the industry. In this study, we investigated the brain
response to cinematic trailers using electroencephalography
(EEG) to probe its potential to predict individual purchase
decisions in our participants as well as movie sales in the
population at large, beyond stated preferences.

In addition to its high temporal resolution, an important
benefit of using EEG is that it allows for relatively natural-
istic viewing conditions: participants can be seated in a
comfortable chair, viewing a relatively large screen with
surround-sound cinematic acoustics. In addition, the cost of
a complete EEG setup is approximately .5% of that of an
fMRI machine (typically approximately $10,000), and typi-
cal per-hour charges are also much lower. Indeed, for these
reasons, EEG is the method of choice for most neuromar-
keting companies; only a handful of such companies use
fMRI (Smidts et al. 2014). The use of EEG in marketing
research already dates back several decades (for a review,
see Wang and Minor 2008). Most of this research has
focused on investigating the memorability of commercial
messages (Rossiter et al. 2001; Rothschild and Hyun 1990)
and their ability to capture viewers’ attention (Smith and
Gevins 2004). However, no study to date has related EEG
measures to observed preferences and choices.

Research has shown that medial-frontal EEG oscillations
(regular cyclic voltage changes) in the beta frequency range
(12–30 Hz; Cohen, Elger, and Ranganath 2007; HajiHosseini,
Rodríguez-Fornells, and Marco-Pallarés 2012; Kawasaki
and Yamaguchi 2013; Marco-Pallares et al. 2008; Van de
Vijver, Ridderinkhof, and Cohen 2011) are associated with
reward processing, while lower frequencies (most promi-
nently theta, 4–8 Hz) are more related to losses and other
negative outcomes (Cavanagh, Cohen, and Allen 2009;
Cavanagh et al. 2010; Cohen, Elger, and Ranganath 2007;
Marco-Pallares et al. 2008; Van de Vijver, Ridderinkhof,
and Cohen 2011). Indeed, Lucchiari and Pravettoni (2012)
recently observed that beta activity seems to be modulated
by the experience of pleasure associated with a favorite
brand, whereas theta modulation seems to reflect the lack of
this experience.

Although it is notoriously difficult to localize the source
of EEG activity (indeed, this is the main drawback of EEG



compared with fMRI, which has excellent spatial resolu-
tion), it is believed that these beta oscillations originate
from brain areas involved in reward processing, most
notably the vmPFC (Hlinka et al. 2010; Jann et al. 2010;
Mantini et al. 2007; Marco-Pallares et al. 2008). More
specifically, a possible role of beta-band oscillations might
be the synchronization of neural populations over long dis-
tances to functionally couple the different areas of the brain
involved in reward processing, such as the vmPFC, stria-
tum, and posterior cingulate cortex (Berns et al. 2001;
Marco-Pallares et al. 2008; Steriade 2006).

In summary, we set out to investigate whether neural
measures could make a valuable and significant contribu-
tion to the prediction of commercial success, beyond stated
preference measures, under naturalistic viewing conditions.
We obtained EEG and stated preference measures from a
small sample of participants while they viewed movie trail-
ers and related these measures to observed individual pref-
erences and population-wide commercial success (U.S. box
office results). We predicted that particularly high-frequency
components of the EEG (e.g., beta band oscillations) would
be related to preference and that these high-frequency oscil-
lations would significantly add predictive power to stated
preference measures. Although we predicted that beta
power on electrode sites above the medial prefrontal cortex
in particular would be related to preference, we did not
restrict our analyses only to this frequency range and topog-
raphy. Instead, we used high-density, high-sampling-rate
EEG recordings to conduct whole-brain, broad-spectrum
analyses on our EEG data.

METHODS
Participants

Thirty-two participants were recruited from the univer-
sity population and paid €25 for their participation. Partici-
pants had no history of neurological illness or damage, were
not using drugs or psychiatric medication, and had normal
or corrected-to-normal vision. Written informed consent
was obtained before the study. We failed to record data from
one participant due to EEG equipment failure, and two par-
ticipants had to be excluded because of excessive artifacts
in their EEG recordings resulting from a problem with the
recordings. The final sample consisted of 29 participants
(16 men) between 18 and 28 years of age (M = 21.5 years,
SD = 2.8).
Procedure

After arriving at the lab, participants received detailed
written and verbal instructions on all the tasks they were
going to perform in the experiment. We then proceeded to
apply the EEG electrodes and seated participants in a dimly lit,
sound-attenuated, electrically shielded room at 1.80 meters
from a 19-inch PC monitor. To familiarize participants with
the task, we had them complete one (short) practice trial.

The task was as follows (for a graphic representation, see
Figure 1): Participants viewed 18 movie trailers in random
order (see the “Stimuli” subsection) while their EEG was
recorded. Each trial began with a presentation of the DVD
cover of the movie featured in the upcoming trailer (for 6
seconds), followed by a blank screen for 2.5 seconds. Then,
the trailer was presented (for approximately 2.5–3 minutes).

After viewing the trailer, participants indicated how much
they would like the movie featured in the trailer they had
just seen and how much they would be willing to pay for the
DVD of this movie (see the “Behavioral Measures” subsec-
tion). These questions were self-paced and were preceded
and followed by a blank screen for 2.5 seconds, after which
the next trial started.

After participants viewed the 18 trailers (lasting approxi-
mately 50 minutes in total), the task ended. Participants
were taken out of the EEG cubicle, and the electrodes were
removed. They were then led to a table on which we had
piled a stack of DVDs of the 18 movies featured in the trail-
ers they had just viewed. We asked them to sort these DVDs
into descending order of preference, which was logged by
the experimenter. Finally, the Becker–DeGroot–Marschak
(BDM) auction was resolved (see the “Behavioral Mea-
sures” subsection). Each participant was then given the
three most preferred DVDs plus the DVD purchased in the
BDM auction to take home.
Stimuli

We constructed a database of 56 movies from four genres
(action, drama, adventure, and thriller), released between
2000 and 2010. To be included in our database, movies had
to have received a rating of 5.5 stars or higher (on the Inter-
net Movie Database [IMDb.com]) based on 1,000 votes or
more. We did this so that only movies of at least reasonable
quality were included in our set. In addition, we did not
include animated movies and cartoons, 3D movies, and
remakes or sequels in our set. Finally, the official trailer had
to be in English and 2–2.5 minutes in length. Movies were
selected on the basis of their U.S. box office result, such that
we took the box office ranking of all movies in each genre
from IMDb.com and selected for inclusion the movies with
rank 150, 200, 250, and so on. If a particular movie did not
meet the criteria, the movie ranked one slot lower would be
selected. This way, we constructed a set of movies that var-
ied considerably in commercial success. We did not select
any of the best 150 movies to avoid including movies that
most participants would either have already seen or at least
be very familiar with.

To construct a set of trailers to present to the participants
in the experiment, we first asked participants to indicate
their least-preferred movie genre (i.e., action, drama, adven-
ture, or thriller). Movies from the indicated genre were then
excluded from the set for that participant. We then asked
participants to indicate whether they had already seen each
of the remaining 42 movies. We then excluded previously
seen movies from the set. From the remaining set, we ran-
domly selected six movies from each of the three genres.
The trailers of these final 18 movies were presented to the
participant in the experiment.

Across participants, 56 trailers were presented in the
experiment, indicating that all trailers in our database were
presented at least once. The median number of views of a
specific trailer was 10, with a minimum number of 2 and a
maximum number of 15 participants having viewed the
same trailer. The commercial success (in terms of U.S. box
office results) of the movies these trailers promoted was
rather diverse (between $4.4 million and $121 million; M =
$47 million), and they also differed quite a bit in audience
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evaluation (IMDb score ranged between 5.6 and 8.3; M =
6.7 on a 10-point scale). Importantly, there were no signifi-
cant differences in terms of box office (F(3, 52) = .60, p =
.60) or IMDb ratings (F(3, 52) = 1.87, p = .15) between the
four genres.
Behavioral Measures
Liking. After viewing a trailer, participants saw a screen

asking them to indicate how much they thought they would
like the movie featured in the trailer they had just seen.
They could indicate their preference on an 11-point scale
(0–10) using the cursor keys.
WTP. Following the liking question, participants indi-

cated how much they would be willing to pay for the DVD
of the movie whose trailer they had just seen. We used the
BDM method (Becker, DeGroot, and Marschak 1964;
Wertenbroch and Skiera 2002), an incentive-compatible
procedure frequently used in experimental economics, to
get a true estimate of their WTP. In short, before the start of
the experiment, participants received €5, which they could
use to buy a DVD of one of the movies they would see in
the experiment. After every trailer, they bid an amount
(between €0 and €5) corresponding to the maximum
amount they would be willing to pay for that particular

DVD. At the end of the experiment, one movie was ran-
domly selected from the 18 trailers the participant viewed in
the experiment. Then, participants were presented with an
urn containing ten balls. Inside each ball was a note marked
€0, €0.50, €1, €1.50, €2, €2.50, €3, €3.50, €4, €4.50,
or €5. If the participant’s bid was greater than or equal to
the drawn amount, he or she would buy the DVD (with the
€5 received at the start of the experiment) for the price
drawn from the urn, keeping the remainder of the €5. If the
bid was less than the amount drawn from the urn, the par-
ticipant would not buy the DVD and would keep the entire
€5. The optimal strategy in the BDM procedure is for par-
ticipants to bid their actual WTP—no more, no less.
Ordered preference. To obtain a measure of relative pref-

erence for every movie in comparison to the other movies
viewed in the experiment, we asked participants to sort the 18
movies they had seen into descending order of preference.
EEG Measures

We recorded EEG from 64 active Ag–AgCl electrodes
(Biosemi ActiveTwo) mounted in an elastic cap. We recorded
horizontal electro-oculogram (EOG) from two electrodes
placed at the outer canthi of both eyes to measure the elec-
trical activity generated by horizontal eye movements. We

Figure 1
SCHEMATIC REPRESENTATION OF THE EXPERIMENT

Notes: Each trial began with the presentation of the cover of the DVD for the trailer that participants were going to see in that trial. Then, the trailer was presented,
and participants indicated how much they liked the movie and how much they would be willing to pay for the DVD (stated preference measures). Participants
completed 18 of these trials. Afterward, they sorted the DVDs of the movie trailers they had just viewed in descending order of preference. We used EEG
recordings during trailer viewing and stated preference measures to predict individual preference for movies (ordered preference) and population-level popularity
(U.S. box office results).

EEG Oscillations Stated Preference

How much
did you like
the movie?

How much
would you be
willing to pay
for this dvd?



recorded vertical EOGs from electrodes on the infraorbital
and supraorbital regions of the right eye placed in line with
the pupil to measure vertical eye movements and blinks.
The EEG and EOG signals were sampled at a rate of 512
Hz, digitally low-pass filtered with a 128 Hz cutoff (3 dB),
and offline rereferenced to an averaged mastoid reference.

We performed all processing of EEG signals using the
Brain Vision Analyzer software (Brain Products). The data
were down-sampled to 256 Hz and further filtered with a 1
Hz high-pass filter with a slope of 48 dB/oct and a 50 Hz
notch filter. The continuous data were then divided into 18
segments (one for each trailer). Each segment started at the
beginning of a trailer and lasted the duration of that specific
trailer (between 2 and 2.5 minutes). We then further sepa-
rated each segment into 256-data-point, 50% overlapping
segments. Eye-movement artifacts were corrected using
independent component analysis, as implemented in the
Brain Vision Analyzer software. Standard artifact detection
and rejection procedures were applied to the 256 data point
segments, rejecting channels within segments containing
jumps larger than 30mV/ms, segments with amplitude dif-
ferences that exceeded 150mV/200ms, and segments with
amplitude differences that did not exceed .5mV/200ms.
Note that we did not reject entire segments when artifacts
were detected, only the channels in which artifacts were
found within a given segment. Doing so results in a very low
dropout of data from artifact rejection (M = .1% [SE = .1]
rejected data per participant). The preprocessed data were
then submitted to a fast Fourier transform algorithm, using a
standard 100% Hanning window. We averaged the resulting
spectral EEG data per trailer for all participants individu-
ally. Averaged segments were then log-transformed to nor-
malize the distributions and were exported to MATLAB
(www.mathworks.com) and R (www.R-project.org) for sta-
tistical analyses.
Statistical Analyses

Using a mass univariate regression, we regressed the
dependent variables (DVs) of interest (i.e., ordered prefer-
ence and box office) onto EEG data from all electrodes and
spectral points, using a multilevel approach. At the first level
(i.e., the participant level), we performed regressions to test
whether the EEG data were related to our DVs. We then
tested the resulting betas at the second level for significant
group effects, using one-sample t-tests. We used cluster-
based permutation testing as a stringent control for multiple
comparisons (Maris and Oostenveld 2007). Briefly, for
every sample (a [channel, frequency] pair), we quantified
the experimental effect by a t-value. We selected samples
for which the t-value was larger than a given threshold
(here, p < .01) for potential inclusion in a cluster. Note that
the threshold used does not affect the false alarm rate of the
final statistical test; it only sets a threshold for considering a
sample as a candidate member of a cluster. We subsequently
clustered selected samples in connected sets on the basis of
temporal and spectral adjacency, and we calculated cluster-
level statistics by taking the sum of the t-values within every
cluster. We then performed permutation testing using the
Monte Carlo method to calculate the posterior significance
probability of our observed effect (Maris and Oostenveld

2007). We report results significant at the a = .05 level, 
family-wise-error (FWE) corrected for multiple comparisons.

Next, we wanted to determine whether the EEG measures
that related to our DVs of interest actually provide unique
information regarding individual and population preference,
beyond self-report measures. To do so, we reduced the
observed EEG effects (which span multiple electrode sites
and frequencies) into measures of the “EEG effect” by taking
the average EEG signal across the data points (electrode-
frequency pairs) within the observed clusters that survived
thresholding at p < .05 FWE (analogous to a “region of
interest” in fMRI research). We then used mixed-model
regression analyses to test whether the EEG data added sig-
nificantly to the models that included only the behavioral
measures in predicting our DVs. For predicting individual
preference (i.e., the ordered preference), we entered both
stated preference1 (WTP) and the EEG effect in a mixed
ordinal regression model (cumulative link mixed model;
Hedeker and Gibbons 1994; Tutz and Hennevogl 1996) fit-
ted with the adaptive Gauss–Hermite quadrature approxi-
mation (the CLMM function from the R:ORDINAL pack-
age) with random intercepts. For predicting box office, we
entered both stated preference and the EEG effect in a linear
mixed model regression analysis (LMER function from the
R:LME4 package) with random intercept and random
slopes for WTP and EEG. We report the fixed predictor
effects from these models, including t or z statistics and
associated p-values (based on a Satterthwaite [1946]
approximation for denominator degrees of freedom). In
addition, we report pseudo R-square measures of fit (Naka-
gawa and Schielzeth 2013) as a measure of usefulness of
including EEG measures as a predictor of choice.2

RESULTS
There was a good amount of variance in how much par-

ticipants liked the movies featured in the trailers they
watched. Liking scores ranged between 0 and 10 (M = 5.4,
SD = 2.4) and WTP ranged between €0 and €5 (M =
€1.80, SD = 1.4; the actual price of the DVDs ranged
between €2.50 and €10.75 [M = €4.86]).
EEG Results

The mass univariate regression with the EEG data as pre-
dictor and the individual ordered preference as the response
variable revealed that a cluster of EEG activity in the beta
range (16–18 Hz) on midfrontal sites (surviving threshold-
ing at p < .05 FWE on electrodes AFz, F2, FC1, FCz; see
Figure 2) was a significant predictor of individual prefer-
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1For predicting both ordered preference and box office, because WTP
and liking scores were highly correlated (r = .87), we used only WTP as a
stated preference measure in these analyses to avoid problems with colin-
earity of predictors. The same models including liking instead of WTP
yielded virtually identical results.

2For mixed models it is, strictly speaking, not possible to calculate a
measure indicating explained variance, analogous to ordinary least square
regression models. Nevertheless, because it is a specific aim of this article
to provide insight into the added contribution of EEG measures in predict-
ing consumer choice, we calculated a pseudo R-square measure to provide
at least some indication of how much information EEG measures add to
stated preference. The exact numbers, however, should be interpreted with
caution and should merely be taken as an indication of variance explained.
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ence: we found that high beta activity during viewing of the
trailer was related to a high preference for that movie.

Regressing the population preference on the EEG data
revealed a cluster of EEG activity that was a significant pre-
dictor of U.S. box office in the gamma range, clustered
around frontocentral sites (surviving thresholding at p < .05
FWE in the 60–100 Hz range, on electrodes F1, F2, F4,
FC3, FC1, FCz, FC2, FC4, C5, C3, C1, C4, and CP5; see
Figure 3): the higher this frontal gamma activity in our par-
ticipants during the viewing of the trailers, the more money
this movie generated at the box office.

Having established that individual and population prefer-
ences are associated with specific components of the EEG,
we next turn to the question of whether these EEG measures
actually provide unique information regarding individual
preference and commercial success, beyond stated prefer-
ence measures.
Individual Preference

Not surprisingly, the model including only WTP as a pre-
dictor of ordered preference revealed that stated preference
was a highly significant predictor of the final individual
preference (b = –2.16, z = –18.14, p < .001, pseudo R2 =
.57). In replicating the EEG results described previously,
when adding EEG data (from the cluster in the beta range) to
the model, we found that EEG was an additional significant
predictor of individual preference: high beta activity (con-
trolling for WTP) during viewing of the trailer was related
to a high preference for that movie (b = –.25, z = –2.74, p <
.01). Importantly, adding this frontocentral beta activity as a
predictor significantly increased the fit of the model predict-
ing individual choice, compared with the model including
the stated preference only (c2(1) = 7.49, p < .01). These
results indicate that there is unique information in the EEG
measures that is not captured by stated preference and that
including both EEG and stated preference measures signifi-
cantly improves prediction of observed individual prefer-
ence. The actual improvement in fit, however, was small
(pseudo R2change = .01), and the actual proportion of the
individual preference accounted for by beta EEG alone was
also limited, though highly significant (b = –.2676, z = –2.991,
p < .005, pseudo R2 = .02).
Population Preference

The model including only stated preference revealed that
WTP was not a significant predictor of population prefer-
ence (i.e., U.S. box office; b = 2.52, t(30.13) = 1.87, p = .07,
pseudo R2 = .01). Again replicating the EEG results described
previously, including EEG (from the cluster in the gamma
range) as a predictor in the model revealed that EEG pro-
vided a strong predictor of population preference (b = 3.92,
t(33.45) = 2.88, p < .005) in the form of frontal gamma
activity. The higher this frontal gamma activity (controlling
for WTP) in our participants during the viewing of the trail-
ers, the more money this movie generated at the box office.
This gamma activity added significantly to the model pre-
dicting population preference (in addition to stated prefer-
ence, which was unrelated to population preference; pseudo
R2change = .02, c2(1) = 7.41, p < .01), indicating that EEG
gamma activity in response to viewing a trailer for a par-

Figure 2
EEG OSCILLATIONS IN THE BETA RANGE (16–18 Hz) PREDICT

INDIVIDUAL PREFERENCES

A: Topographic Maps of the Relationship Between Power in the Beta
Band and Preferencea
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aColors represent t-values. Electrodes that showed above-threshold acti-
vations (p < .05, FWE corrected) are marked. Note that the most preferred
movies have the lowest numerical rank, so that beta power and rank are nega-
tively related. However, increased beta power predicts increased preference.

bBecause of substantial individual differences, beta power from all sig-
nificant electrode-frequency pairs was transformed to z-scores and aver-
aged across participants here, for illustrational purposes only.



ticular movie significantly enhances predictions of commer-
cial success for that movie.

To test whether EEG gamma is predictive of box office
success across genres, we added genre as a fixed-effect pre-
dictor in the regression model. The results showed that even
though the genre predicts the box office to a certain extent
(adventure has a negative effect, whereas the other genres
have a positive effect, on box office), the effect of EEG
gamma remains significant (b = 3.57, t(508.30) = 2.86, p <
.005), independent of genre.

DISCUSSION
In the present study, we aimed to investigate whether

neural measures could make a valuable and significant con-
tribution to the prediction of individual choice behavior and
population-wide commercial success. Importantly, we
wanted to show that these neural measures could provide
unique information beyond stated preference measures.
Therefore, we obtained EEG and stated preference mea-
sures from a small sample of participants while they viewed
movie trailers and related these measures to observed indi-
vidual choices and population-wide commercial success
(U.S. box office results). We predicted that particularly
high-frequency components of the EEG (e.g., beta band
oscillations) would be related to preference.

The results show that medial-frontal beta power is indeed
related to individual preference: the higher the amplitude of
EEG oscillations in the beta frequency range (16–18 Hz)
during viewing of the movie trailer, the higher participants
ranked that particular movie relative to the other movies for
which they viewed trailers. These findings are highly consis-
tent with the literature, which has linked medial-frontal beta
to reward processing; increased beta power has been observed
during reward anticipation and reward delivery (Cohen,
Elger, and Ranganath 2007; Kawasaki and Yamaguchi
2013; Marco-Pallares et al. 2008), while its medial-frontal
distribution is suggestive of a source in the medial frontal
cortex (Mantini et al. 2007; Marco-Pallares et al. 2008), a
key hub in the neural reward system that has been strongly
implicated in reward evaluation and choice in previous
studies (Berns and Moore 2012; Falk, Berkman, and Lieber-
man 2011; Falk et al. 2011; Knutson et al. 2007).

In addition to the vmPFC, reward processing is carried
out by an extensive network of brain areas, including the
striatum and posterior cingulate cortex (Bartra, McGuire,
and Kable 2013). Such an extensive and distributed network
requires an integration mechanism that allows for the coor-
dination of and communication between the different areas
involved. Brain oscillations are an effective mechanism to
accomplish such a task (Akam and Kullmann 2010; Engel,
Fries, and Singer 2001; Womelsdorf et al. 2007). Specifi-
cally, high-frequency oscillations (beta and gamma bands)
are well suited to synchronize these different components of
the reward network because they allow for the communica-
tion and integration of information across distant brain
areas.

In the present study, we observed increased amplitudes of
beta oscillations when participants viewed movie trailers
that they ranked highly in terms of preference at the end of
the experiment, after viewing all the trailers. Previous
research has shown that power in the beta band is not only a
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Figure 3
EEG OSCILLATIONS IN THE GAMMA RANGE (>60 Hz) PREDICT

POPULATION-LEVEL PREFERENCES

A: Topographic Maps of the Relationship Between Power in the Gamma
Band and Commercial Successa
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B: Scatterplot of the Relationship Between Gamma Power and U.S. Box
Office of the 56 Moviesb

aColors represent t-values; electrodes that showed above-threshold acti-
vations (p < .05, FWE corrected) are marked.

bRelatively high power in the gamma band was related to increased box
office results. Because of substantial individual differences, gamma power
from all significant electrode-frequency pairs was transformed to z-scores
and averaged across trailers here, for illustrational purposes only.
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passive correlate of reward anticipation or delivery but also
related to subsequent behavior. Beta oscillations upon
reward delivery have been related to improved learning of
stimulus materials or task contingencies (i.e., reinforcement
learning; Cohen, Elger, and Ranganath 2007); the increase in
beta band oscillations following positive reinforcement has
been suggested to function as a mechanism to strengthen the
current representations of value and reward, thereby influ-
encing future behavior (Van de Vijver, Ridderinkhof, and
Cohen 2011). Indeed, beta oscillations following reward
delivery have been found to be predictive of improved
memory performance for the rewarded stimuli (Kawasaki
and Yamaguchi 2013). Taken together, increased amplitudes
of beta oscillations evoked by movie trailers seem to indi-
cate that these trailers may be experienced as motivationally
rewarding and that the rewarding aspects of that particular
movie are transferred to memory, such that relatively stable
and lasting memory traces of this preference are formed.

Importantly, we found that beta power is related to indi-
vidual preference, beyond stated preference measures. Not
surprisingly, simply asking participants how much they
would be willing to pay for a movie immediately after hav-
ing viewed the trailer was already highly predictive of their
final ordered preference of all the movies they saw in the
experiment. Nevertheless, adding the EEG data to the
model increases the explained variance by a significant
(albeit small) amount, indicating that these neural measures
do add something unique to the prediction of choice behav-
ior. These observations correspond well with previous fMRI
work relating neural activation to individual choice: in
Knutson et al. (2007), neural measures (activity in the stria-
tum and vmPFC) significantly increased predications of
individual choices, but the authors also find that the increase
in predictive power was approximately 1%. We note that in
our experiment, we measured WTP and final preference
very close together in time (within one hour), which likely
contributes to the strong association between these two
measures and the relatively small additional contribution of
EEG. One might speculate that if stated preference and final
preference or choice were observed further apart in time, the
contribution of EEG could potentially be more substantial.

When relating our neural data to commercial success of
the viewed movies, we found a relationship with very high-
frequency oscillations in the gamma range (>60 Hz), with a
frontal and a somewhat bilateral distribution. Traditionally,
gamma band activity has been related to states of enhanced
arousal and focused attention, even in the absence of a spe-
cific task such as in the present experiment (Engel, Fries,
and Singer 2001; Fries 2001; Von Stein, Chiang, and König
2000). Researchers have proposed that gamma synchroniza-
tion between higher-order and lower-order areas of the brain
reflects top-down control of attention, thereby  enhancing
relevant stimulus representations (Rodriguez et al. 1999;
Steinmetz et al. 2000; Tallon-Baudry et al. 1997) while sup-
pressing irrelevant stimuli (Fries 2005; Jensen and Maza-
heri 2010). Indeed, previous research has shown enhanced
high-frequency EEG components during attentive listening
(Tiitinen et al. 1993), visual search (Tallon-Baudry et al.
1997), and attention to moving visual stimuli (Gruber et al.
1999). Moreover, gamma band activity has been found to be
enhanced in task situations involving object recognition

(Rodriguez et al. 1999) and emotional evaluation (Müller,
Gruber, and Keil 2000), processes that are most likely
engaged during the viewing of movie clips. Taken together,
these findings may suggest that the more participants were
engaged in viewing the movie trailer, the more popular or
successful the movie ultimately was at the population level,
independent from individual preference, which did not
show any relationship with gamma power.

Importantly, Mantini et al. (2007) find that gamma power
is most strongly related to activations of the medial PFC,
which corresponds well with previous fMRI studies showing
that the medial PFC in particular is related to population-
wide preferences and choice (Berns and Moore 2012; Falk,
Berkman, and Lieberman 2012). In this context, it is worth-
while to note that gamma power relates not only to engage-
ment during passive viewing but also to the further process-
ing of the viewed materials; increased gamma power has
been found to be related to associative learning (Miltner et
al. 1999) and to committing viewed material to memory
(Howard et al. 2003; Mainy et al. 2007). Indeed, the medial
PFC is strongly connected to the hippocampus (a brain area
critically involved in memory formation; Gilbert and Fiez
2004; Pochon et al. 2002), and intracranial depth electrode
recordings in epileptic patients have demonstrated that local
gamma frequency activity in the hippocampus and gamma
synchronization between hippocampus and other brain
areas were correlated with successful encoding into long-
term memory (Fell et al. 2001). Taken together, these find-
ings may suggest that increased amplitudes of oscillations
in the gamma band evoked by movie trailers relate to their
capacity to capture the viewers’ attention, increasing memo-
rability of the viewed material, which in turn increases the
probability that people will actually go see the movie, thus
increasing box office returns.

Again, we found that gamma power is related to popula-
tion preference independent of stated preference measures.
We found that it is difficult to predict box office returns by
simply asking participants how much they would be willing
to pay for the movie (explained variance was not significant
and only 1%).3 Importantly, adding the EEG data to the
model increases predictive power significantly, to 3%.4 Of
course, predictive power in absolute terms is still quite low
when we include EEG gamma power as a predictor. How-
ever, an increase of two percentage points (which represents
a 200% increase in predictive power) may actually be mean-
ingful when we consider the enormous stakes (the average
budget for producing a movie is $70 million and promotion
expenditures for a major movie release average more than
$40 million [MPAA 2012]) involved in movie releases.

3We note that the sample size in the present study was much smaller than
what is common when using traditional measures for marketing research,
which in some ways puts these traditional measures at a relative disadvan-
tage compared with the EEG measures. Therefore, this result should be taken
as a lower limit of predictive accuracy using traditional measures only.

4Note that this percentage should be taken as an upper limit of the vari-
ance in box office that can be explained by EEG measures because the
EEG gamma effect, as entered as a predictor in the regression, is derived
from the EEG signal that relates most strongly to box office (the same is
true for the effect on individual preference). Although this approach is
valid in the current study, taking the same frequency range and electrodes
to predict commercial success in future studies may result in lower predic-
tive accuracy.



Being that much more accurate in judging how well the
movie will do in cinemas—or, indeed, gauging the effec-
tiveness of the promotional trailer—could lead to better-
informed decisions on which trailer to release and how much
money to invest in promoting a particular movie, potentially
decreasing costs and increasing revenues tremendously.

In the current study, we found that particularly high-
frequency EEG components were related to both individual
preference (beta) and population preference (gamma). As
discussed previously, our findings fit well with previous lit-
erature relating power in beta and gamma bands to reward
and attentional processes, respectively. However, in prac-
tice, it may actually not be that crucial to know what these
different neural measures reflect in terms of psychological
processes. Instead, in many cases it will be sufficient to
know that these measures relate to real-world outcomes
such as individual and population-wide preferences and
choices. Herein, we report evidence that high-frequency
oscillations provide such neural markers of commercial suc-
cess, indicating that increased power in these frequency
bands is indicative of a “better” movie trailer, commercial,
or product, irrespective of what these oscillations actually
reflect. Importantly, more experimental results are needed to
establish the robustness of these findings and determine
whether they extend to different types of commercials and
products. In addition, whereas in the present study we aver-
aged EEG activity over the trailer, future studies could take
advantage of the high temporal resolution of EEG to inves-
tigate the time course of EEG within trailers to pinpoint the
key scenes within a trailer that predict movie success (see,
e.g., Vecchiato et al. 2010, 2011). Because participants all
saw different trailers in the present study, leading to a low
number of observations per trailer (and thus relatively low
signal-to-noise ratio per individual trailer), doing so was not
possible here.

In summary, the current study demonstrates that EEG
measures (beta and gamma oscillations) capture unique
information regarding both individual and population-wide
preference and can thus be used as a neural marker for com-
mercial success. As such, we provide the first evidence that
such EEG activations in response to marketing stimuli are
related to real-world outcomes. In addition, we are the first to
show that such neural measures significantly add to models
predicting choice behavior compared with models that include
only stated preference measures. Finally, because EEG mea-
sures are relatively cheap to obtain, and because even a
small increase in accuracy in estimating the successfulness
of products or marketing stimuli can result in a substantial
increases in revenue, we suggest that including such mea-
sures in marketing strategies may actually be cost effective.
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